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Vancomycin-resistant Staphylococcus
aureus: a new model of antibiotic
resistance
Keiichi Hiramatsu 

Vancomycin has been the most reliable therapeutic
agent against infections caused by meticillin-resistant
Staphylococcus aureus (MRSA). However, in 1996 the
first MRSA to acquire resistance to vancomycin, was
isolated from a Japanese patient. The patient had
contracted a post-operative wound infection that was
refractory to long-term vancomycin therapy.
Subsequent isolation of several vancomycin resistant 
S aureus (VRSA) strains from USA, France, Korea,
South Africa, and Brazil has confirmed that
emergence of vancomycin resistance in S aureus is a
global issue. A certain group of S aureus, designated
hetero-VRSA, frequently generate VRSA upon
exposure to vancomycin, and are associated with
infections that are potentially refractory to
vancomycin therapy. Presence of hetero-VRSA may be
an important indicator of the insidious decline of the
clinical effectiveness of vancomycin in the hospitals.
Vancomycin resistance is acquired by mutation and
thickening of cell wall due to accumulation of excess
amounts of peptidoglycan. This seems to be a common
resistance mechanism for all VRSA strains isolated in
the world so far.
Lancet Infectious Diseases 2001; 1: 147–155

Meticillin-resistant Staphylococcus aureus (MRSA) has
occurred in many countries since its discovery in 1961.1

However, in recent years, clinicians have been concerned by
the increased frequency of MRSA infections.2 This resurging
MRSA problem seems to be based on the lack of potent
therapeutic agents having an unequivocal cell-killing effect,
and thus capable of eliminating MRSA from the patient’s
body. Increased use of vancomycin—a drug with rather
weak cell-killing potency against prevailing MRSA—seems
to have set a basis for the selection of vancomycin resistance
in MRSA. In 1997, we reported the first MRSA strains with
reduced susceptibility to vancomycin, which were isolated
from patients in whom vancomycin therapy was
ineffective.3,4

We reported two classes of vancomycin-resistant strains:
vancomycin-resistant S aureus (VRSA) that has a
vancomycin minimum inhibitory concentration (MIC)
of 8 mg/L, and hetero-VRSA that spontaneously generates
VRSA within the cell population. The nomenclature is based
on the MIC breakpoints of the British Society for
Antimicrobial Chemotherapy who define the MIC of 8 mg/L
as “resistant.” However according to the National
Committee for Clinical Laboratory Standards (NCCLS)
breakpoint, these strains are called vancomycin-

intermediate S aureus (VISA) or glycopeptide-intermediate
S aureus (GISA) in the USA.5 Although hetero-VRSA is
categorised as “susceptible” to vancomycin based on current
MIC breakpoints, it generates VRSA cells at a high frequency
within its cell population. 

To date, as well as Japan, VRSA strains have been isolated
from USA, France, Korea, South Africa, Brazil, and
Scotland.6–11 In addition hetero-VRSA strains have been
reported from many more countries, indicating that the
problem is a global one.12–16 In this review, the mechanism of
glycopeptide resistance in S aureus primarily based on the
analyses of clinical strains will be summarised. The viewpoint
that hetero-VRSA constitutes a precursor stage to
vancomycin resistance, and that the emergence of VRSA
is an outcome of the prevalence of hetero-VRSA will be
explained.
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Figure 1. Synthesis of murein monomer (monomeric component of
peptidoglycan). Murein monomer is composed of two amino sugars 
(N-acetyl muramic acid [MurNAc] and N-acetyl glucosamine [GlcNAc])
and ten aminoacids. Murein monomer precursor is composed of MurNAc
and stem peptides (L-alanine, D-glutaminc acid, L-lysine, and two
D-alanines). It is synthesised in the cytoplasm and attaches to a lipid
carrier in the cytoplasmic membrane. Then, during its transfer to the outer
surface of the cytoplasmic membrane, GlcNAc and five glycines are
added, and its isoglutamic acid is amidated to become mature murein
monomer.
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The mechanism of vancomycin resistance 
Cell-wall peptidoglycan synthesis 
Both beta-lactam and glycopeptide (including vancomycin
and teicoplanin) antibiotics exert their antimicrobial effects
by inhibiting the cell-wall synthesis of S aureus. The cell has
a high osmotic pressure (10·13–20·26 � 105 Pa). For
S aureus cells to multiply in an environment with a lower
external pressure, they must keep synthesising a strong
extracellular structure called peptidoglycan (or murein) to
prevent the cells from rupturing. To produce peptidoglycan,
its monomeric component (murein monomer) must be
synthesised inside the cell, and transferred to the outside by
lipid carriers present in the cytoplasmic membrane
(figure 1). 

Two enzymes located in the cytoplasmic membrane,
glycosyltransferase and transpeptidase, assemble the murein
monomer into a gigantic structure of peptidoglycan (figure
2). Glycosyltransferase polymerises murein monomers
between their amino-sugar moieties to produce nascent
peptidoglycan chains. Then, transpeptidase, also known as
penicillin-binding protein (PBP), links the newly formed
nascent peptidoglycan chains to pre-existing peptidoglycan
layers of the S aureus cells. In this step, PBP recognises 
D-alanyl-D-alanine residues of murein monomer, and cuts
in between the two D-alanines and ligates penultimate 
D-alanine to the tip of a pentaglycine chain protruding from
pre-existing peptidoglycan layers (figure 2). When the inter-
peptide bridge is formed, the terminal D-alanine of the
murein monomer is lost from the completed peptidoglycan.
However, it is known that about 20% of D-alanyl-D-alanine
residues remain unprocessed by PBPs. As a result, as many
as 6 � 106 unprocessed D-alanyl-D-alanine residues remain
in the cell wall of a single S aureus cell.17

PBP is the target of beta-lactam antibiotics such as
penicillin. Beta-lactam is a structural analogue of D-alanyl-
D-alanine, and it covalently binds to the S aureus PBP
(depicted in red in figure 3) at its D-alanyl-D-alanine-
binding pocket. This inactivates the PBP and inhibits the

cross-bridge formation step of peptidoglycan synthesis,
causing the cell to rupture from the peptidoglycan mesh.
However, MRSA produces a unique PBP, designated PBP2�
(or PBP2A; in green in figure 3), which has an extremely low
binding affinity to beta-lactam antibiotics.18-20 As a result, the
PBP2� can keep on synthesising the peptidoglycan even in
the presence of beta-lactam antibiotics. This is the basis of
beta-lactam resistance of MRSA. The unique PBP2� is the
product of the exogenous gene called mecA carried by a
mobile genetic element, SCCmec, which S aureus has
acquired from an as yet unknown bacterial species by lateral
gene transfer. 21

Glycopeptides inhibition of transpeptidation and
nascent peptidoglycan synthesis
By contrast with beta-lactams, glycopeptides bind to
D-alanyl-D-alanine residues of the murein monomer
(figure 4). There are two classes of binding targets in the
S aureus cell: firstly, D-alanyl-D-alanine residues in the
completed peptidoglycan layers or on the nascent
peptidoglycan chain; and secondly, the murein monomers
located in the cytoplasmic membrane that serves as the
substrates for glycosyltransferase (figure 4). The binding of
glycopeptides to the former targets does not inhibit nascent
peptidoglycan synthesis, though it may interfere with cross-
bridge formation mediated by PBPs. This may be the reason
why teicoplanin is synergistic with beta-lactam antibiotics. If
glycopeptides bind to murein monomers in the cytoplasmic
membrane, peptidoglycan synthesis is completely inhibited,
and the cells cease to multiply. However, for the
glycopeptide molecules to bind to such targets, they have to
pass through about 20 peptidoglycan layers (only two layers
are drawn in figures 2–4) without being trapped by the first
targets. Since there are many D-alanyl-D-alanine targets in
the peptidoglycan layers, many glycopeptide molecules are
trapped in the peptidoglycan layers. This compromises the
therapeutic effectiveness of glycopeptides. For example, if
high numbers of S aureus cells are present in the infected
tissue of the patient, many glycopeptide molecules will be
adsorbed to their cell walls, and tissue concentrations will be
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Figure 2. Assembly of peptidoglycan viewed from outside of the cell. In
blue is the cytoplasmic membrane. Glycosyltransferase polymerises the
murein monomer to produce a nascent peptidoglycan single chain.
Penicillin-binding protein (PBP) grasps at the D-alanyl-D-alanine residues
of stem peptide and cleaves in between the residues to ligate the
penultimate D-alanine to the pentaglycine of the neighbouring
peptidoglycan chain. The twisting of peptidoglycan chains is omitted
from the illustration for visual simplicity.

Figure 3. Action of beta-lactam: Beta-lactam (purple double cubes) is a
structural analogue of D-alanyl-D-alanine residues. It inactivates S aureus
PBPs (in red), but cannot bind to PBP2� (in green; MRSA-specific PBP)
with high affinity. Therefore, MRSA can continue peptidoglycan synthesis
in the presence of beta-lactams whereas meticillin-susceptible S aureus
cannot.
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lower than the required therapeutic threshold. Therefore,
measures to decrease bacterial cell numbers in the patient’s
body by surgical elimination of an abscess or by drainage of
pus would frequently be required to make glycopeptide
therapy more effective. For the same reason, accurate
susceptibility testing of glycopeptides are much more
difficult to do than with other antibiotics, because variations
of inoculum size (cell number) added to the broth or the
agar plates containing glycopeptides can affect the free drug
concentration, resulting in variations of MIC values. 

Cell-wall thickness is a major contributor to
vancomycin resistance
Mechanism of vancomycin resistance has been extensively
studied with the first clinical VRSA strain, Mu50.22–24

Biochemical and transmission electron microscopy (TEM)
examination of the Mu50 cell, suggested that it produces
increased amounts of peptidoglycan. More murein
monomers and more layers (probably 30–40 layers as
judged by cell-wall thickness observed with TEM) of
peptidoglycan are considered to be present in the cell wall
(figure 5; only three layers are drawn). As a result, more
vancomycin molecules are trapped in the peptidoglycan
layers before reaching the cytoplasmic membrane where
peptidoglycan synthesis occurs. Moreover, a higher
concentration of vancomycin would be required to saturate
all the murein monomers that are supplied at an increased
rate in Mu50 (figure 5). Besides the vancomycin-trapping
mechanism, designated “affinity trapping,”12,13,17 our recent
experiments suggest that the mesh structure of the outer
layers of thickened peptidoglycan is destroyed by the
trapped vancomycin molecules themselves. This prevents
further penetration of vancomycin molecules into the inner
part of cell-wall layers (otherwise known as the
“clogging”phenomenon).24

A thickened cell wall, presumably due to the
accumulation of increased amounts of peptidoglycan, is the
cardinal feature of all the VRSA clinical strains isolated so far
from various countries. The cell walls of 16 VRSA strains
isolated from seven countries are significantly thicker (mean
31·3 nm, SD 2·6 nm) than the average of vancomycin-
susceptible S aureus (VSSA) strains (mean 23·4 nm, SD

1·9 nm) as measured by TEM (L Cui, Department of
Bacteriology, Juntendo University, Tokyo, Japan, personal
communication). Revertant strains susceptible to
vancomycin (MIC<4 mg/L) were obtained from these VRSA
strains. They all had decreased cell-wall thicknesses that
were indistinguishable from those of VSSA strains.
Furthermore, vancomycin strains that were again made
resistant by vancomycin selection of susceptible revertant
strains regained a thickened cell wall (L Cui, personal
communication). Therefore, thickening of cell wall and
vancomycin resistance are well correlated in all the VRSA
strains tested, further supporting the view that thickening of
the cell wall is a major contributor to vancomycin resistance. 

A report maintains that strain PC-3 isolated in New
York has a VRSA “normal” cell-wall thickness inspite of its
vancomycin resistance.25 However, the authors of this report
did not measure the cell-wall thickness quantitatively with
appropriate control strains.25

Theoretically, there are two different ways to thicken the
cell-wall peptidoglycan layers. One is to produce excess
amounts of peptidoglycan, as seen in Mu50. The other is to
reduce peptidoglycan turnover. New peptidoglycan layers
are always produced on the surface of the cytoplasmic
membrane; they displace the older layers outwards so that
they are eventually cast off from the cell surface. Autolytic
enzymes (peptidoglycan hydrolysing enzymes) are involved
in these shedding processes. A VRSA strain isolated from
Michigan, USA, has a remarkably reduced autolytic activity
that returns to normal with the loss of vancomycin
resistance and reduction in the cell wall thickness (L Cui,
personal communication). Therefore, the Michigan strain
and Mu50 seem to employ a different strategy to achieve the
same goal—ie, thickening of the cell wall.

Other factors are also known to contribute to
vancomycin resistance in Mu50, though to a lesser degree
than the cell-wall thickness. Enhanced supply of murein
monomers in Mu50 cells is associated with a decrease in the
intracellular glutamate level. Glutamine is consumed by the
increased activity of one of the key enzymes (glucosamine
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Figure 4. Action of vancomycin and teicoplanin. Drug binds to D-alanyl-
D-alanine residues of murein monomer. The murein monomer bound by
vancomycin does not serve as a substrate for glycosyltransferase.

Figure 5. Thickened cell wall of Mu50. Affinity trapping mechanism of
resistance Mu50 has 30–40 layers of peptidoglycan. Supply of murein
monomer is increased and more monomers are incorporated into nascent
peptidoglycan chains. Increased D-alanyl-D-alanine residues are present
in the completed peptidoglycan layers. More vancomycin molecules are
trapped in the peptidoglycan layers and less reach the cytoplasmic
membrane than usual.
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6-phosphate synthetase) of the murein monomer synthesis
pathway.24 This results in the increased synthesis of
structurally altered murein monomers (the non-amidated
form) that are inefficient substrates for cross-bridge
formation by PBPs.23 The final outcome of this sequential
event is a raised proportion of D-alanyl-D-alanine residues
in the peptidoglycan layers. In fact, about 2·4 times the
amount of D-alanyl-D-alanine residues are found in a unit
weight of purified peptidoglycan of Mu50 compared with
VSSA strains.23 This means that a single cell of Mu50, with its
1·5 times thickened cell wall, can trap as many as 3·6 times
more vancomycin molecules than a VSSA cell. Reduced
cross-linkage of peptidoglycan has also been shown in a
VRSA strain obtained in vitro.26 In this study a drastic
decrease in peptidoglycan cross-linkage due to mutational
inactivation of the PBP genes (PBP2� and PBP4) is
associated with vancomycin resistance in a VRSA strain
generated in vitro, called VM.26 However, both the mutant
strain VM and MRSA strain COL, from which the former
mutant was derived, have an unusually thickened cell wall as
far as we can judge from the published electron
microscopy.27 In our experiments, reduction of
peptidoglycan cross-linking alone does not cause
glycopeptide resistance.24 Its contribution is effective only
when the strain has a thickened cell wall. Cell wall
thickening is considered the prerequisite for vancomycin
resistance.

We also found that the non-amidated murein monomer
has an increased binding affinity for vancomycin compared
with the normal murein monomer.23 Therefore, the
production of the abnormal murein monomers also
contributes to the vancomycin resistance of Mu50 by
enhancing the affinity-trapping, and clogging the
peptidoglycan mesh. 24

The genetic basis for vancomycin resistance has not been
elucidated yet. My research group has identified some novel
genes whose expression is either increased or decreased in
Mu3 and/or Mu50, compared with vancomycin-susceptible
strains.28 More information will become available by
comparing the whole genome sequences of Mu50 and N315,
(the latter is a vancomycin-susceptible Japanese MRSA
strain), since the strains are closely related and only different
in a few phenotypes, including vancomycin resistance. 29 One
thing now apparent is that the SCCmec element carrying the
mecA gene is not required for vancomycin resistance. The
precise deletion of the element from Mu50, Mu3, and other
Japanese hetero-VRSA strains did not alter the level and
patterns of vancomycin resistance.22 Recent isolation of a
vancomycin-resistant, meticillin-susceptible strain further
indicates that vancomycin resistance is not necessarily
confined to MRSA.30

Teicoplanin resistance 
Teicoplanin and vancomycin belong to the glycopeptide
class of antibiotics. Both exert antimicrobial activity by
binding to the D-alanyl-D-alanine residue of murein
monomer. Therefore, a common resistance mechanism for
the two antibiotics is to be expected. In fact, all the VRSA
strains analysed possess teicoplanin resistance (defined by
MIC �8 mg/L). Cell-wall thickness also contributes to

teicoplanin resistance as expressed by the VRSA strains
(MIC 8–32 mg/L) and resistance decreases when cell-wall
thickness decreases. However, about half of the
vancomycin-susceptible revertants of VRSA strains still
maintain intermediate levels of teicoplanin resistance (MIC
8 or 16 mg/L). This finding suggests that there may be other
mechanisms than cell-wall thickness for teicoplanin
resistance.

In support of this suggestion is the historical overview of
glycopeptide resistance in S aureus.17 Historically, S aureus
acquired teicoplanin resistance before it acquired
vancomycin resistance.31,32 There are quite a few MRSA
strains that are resistant to teicoplanin but are still
“susceptible” to vancomycin as judged by MIC values.
However, acquisition of teicoplanin resistance is frequently
accompanied by a small increase in vancomycin resistance;
in fact, hetero-VRSA strains belong to this category of
strains (see below). 

Shlaes and colleagues33 demonstrated that PBP2 is
overproduced in a teicoplanin-resistant S aureus mutant
strain (MIC 16 mg/L) compared with its parent clinical
strain.33 Over-production of PBP2 is also observed in Mu50
and the hetero-VRSA strain Mu3—both are resistant to
teicoplanin.22 We demonstrated that experimental over-
expression of PBP2� in a VSSA strain causes the vancomycin
MIC to increase by 1 mg/L (from 1 to 2 mg/L), whereas that
of teicoplanin increased significantly from 2 to 8 mg/L.22 In
agreement with its marginal contribution to vancomycin
resistance, over-expressed PBP2� alone does not lead to cell-
wall thickening. On the other hand, it increases the rate of
cross-linking of cell-wall peptidoglycan (K Hiramatsu,
unpublished observation). This finding highlights again the
difference between the two glycopeptides. It may be that
teicoplanin is more prone to inhibiting transpeptidation
than vancomycin, and vancomycin more inclined to inhibit
transglycosylation.

Hetero-VRSA
Clinical significance of hetero-VRSA 
Mutant strains having vancomycin MIC of 8 mg/L are not
obtainable in vitro by one-step selection of vancomycin in
VSSA strain. However, some Japanese clinical MRSA strains
having susceptible vancomycin MIC values (<8 mg/L)
generate VRSA at a resistance frequency of 10�6 or greater.4

These strains, represented by strain Mu3, are considered as
precursor strains for VRSA. When strain Mu3 is grown
overnight in drug-free medium to 107 cells/mL, several
hundred cells are found growing in samples plated on agar
plates containing 4 mg/L of vancomycin, implying that the
MIC values of these cells are equal to or greater than
8 mg/L). Mu3 also contains a subpopulation of cells that are
resistant to various other concentrations of vancomycin 
as illustrated in figure 6. Therefore, Mu3 has a
“heterogeneous” population of cells with different levels of
vancomycin susceptibility including vancomycin-resistant
cells (MIC �8 mg/L). Thus, the Mu3 strain is designated
hetero-VRSA.4 Population analysis is the standard method
for identifying hetero-VRSA.34 It analyses as many as 107–9

CFU (colony-forming units) by contrast with about 104 CFU
in standardised methods used today. Standard MIC
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methods cannot quantitatively detect the resistant cell sub-
population present in hetero-VRSA strains, which
constitutes only 1/105–6 of the entire population due to the
low inoculum density used. 

Conventional susceptibility tests (MIC, disk diffusion
tests, &c) cannot discriminate between VSSA and hetero-
VRSA.17 However, the two may behave in a significantly
different manner in response to vancomycin therapy. Figure
7 illustrates a test tube experiment comparing Mu3 with a
VSSA strain 87/20. Mu3 has a slightly higher vancomycin

MIC value (2 mg/l) than the MRSA strain 87/20 
(MIC=1 mg/L). Inspite of this minor difference in MIC
value, 10 mg/L of vancomycin is required to completely
suppress the growth of about 2 � 106 cells/mL of Mu3,
whereas 2 mg/L was sufficient to suppress an equivalent
number of cells of strain 87/20. This difference is due to a
sub-population of cells in Mu3 that are resistant to
vancomycin (figure 7). It is also important to observe that
Mu3 cell number decreases in the initial 72 h of exposure
to 5 mg/L of vancomycin, but increases substantially
thereafter. This correlates with the unique clinical case from
whom Mu3 was isolated, where the patient’s pneumonia
initially responded favorably to vancomycin therapy, but
became exacerbated after the 9th day of vancomycin
therapy. 35

Resistance heterogeneity is not confined to vancomycin
but is also well described for other antibiotics such as beta-
lactams, and aminoglycosides.17 In the era of antibiotic
resistance, the concept of hetero-resistance is important not
only for the prediction of clinical effectiveness of therapy for
individual patients, but also for the detection of trends of
emerging resistance. Because hetero-resistance escapes
detection by conventional susceptibility tests, is not an
acceptable reason to neglect its importance from a clinical
and epidemiological viewpoint.

Biological significance of hetero-VRSA
VRSA is obtained through two-step selection of vancomycin
resistance in Japanese MRSA strains (figure 8). The hetero-
VRSA strains obtained by in-vitro selection with 1 mg/L of
vancomycin maintained the hetero-resistance phenotype for
a week’s serial passage in drug-free media. However, the
strains tend to lose the resistant subpopulations by the
second week. This observation contrasts with the stability of
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the hetero-resistance of Mu3, which is stably expressed even
after 80 days’ serial passage in a drug-free medium.
Therefore, it suggests that there are two types of hetero-
VRSA: stable and unstable (figure 8). The stable variant of
hetero-VRSA may be established either by cycles of exposure
to vancomycin or by one-step acquisition of a single but
stable genetic alteration. In-vitro experiments predict that
many unstable hetero-VRSA strains are produced in the
clinical setting. These strains express hetero-resistance
directly after isolation from patients who undergo
glycopeptide therapy, but the phenotype tends to be lost
during strain storage in drug-free media, contributing to the
underestimation of the prevalence of hetero-VRSA.
However, it would still be important to detect stable hetero-
VRSA strains, because they would prevail more easily in the
hospital environment eventually causing more vancomycin
therapeutic failures by generating VRSA at high frequency
during the therapy. 

Vancomycin-resistance in the VRSA phenotype also
tends to revert.36 Experiments with 16 VRSA strains from
different parts of the world showed that the vancomycin
MIC returned to “susceptible” levels (2 mg/L) after 10 to 84
days’ of serial passages. Therefore, the stability of VRSA
phenotype can vary significantly. A notable observation, was
that the “susceptible” revertants obtained from 15 of the 16
VRSA strains still expressed heterogeneous vancomycin
resistance similar to that of Mu3—one strain returned to a
susceptibility level with a VSSA-type population curve
characteristic (see the population curve of FDA209P in
figure 6). Exposure of these revertants to 4 mg/L of
vancomycin, however, selected VRSA strains at very high
frequencies of about 10�4–10�5 (L Cui, unpublished
observation). This finding indicates that, though the VRSA
strain may not disseminate itself as a stable resistance
phenotype that tends to return to the hetero-VRSA status, it
can readily revert to VRSA when exposed to vancomycin
(figure 8).

From December 1998 to January 1999, an outbreak of
VRSA was recorded in a Brazilian hospital (G A Oliveira,
General Hospital of Vila Penteado and School of
Pharmaceutical Sciences, University of Sao Paulo, Sao
Paulo, Brazil, personal communication). The incidence
indicated that VRSA can transmit from patient to patient if
vancomycin is used liberally for burn-unit patients housed
in the same room. Aside from this special case, it would be
the hetero-VRSA that would disseminate in the hospital and
contribute to the incidence of vancomycin-refractory
infection. In fact, many hetero-VRSA strains were found
even in the Brazilian hospital case besides the multiple VRSA
isolates. The emergence of clinically significant VRSA could
be the tip of the iceberg, and a sign of the more widespread
and insidious prevalence of hetero-VRSA in the hospital. 

From a biological point of view, the hetero-VRSA status
seems to be a successful ecological achievement of S aureus
for the procurement of survival against vancomycin
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pressure. Although vancomycin suppresses the growth of
99·9% of the population of hetero-VRSA, the rest of the
population survives and grows in the presence of 4 mg/L of
vancomycin, which is almost the upper limit of vancomycin
concentration achieved in most infected tissues. Some sub-
population of cells can grow even in 9 mg/L of vancomycin
(figure 6). Those VRSA cells spend much energy to produce
thickened cell walls, to survive the vancomycin pressure.
Once the vancomycin pressure is alleviated, the VRSA cells
return to the hetero-VRSA status to conserve energy.
S aureus seems to have chosen an effective survival
mechanism to prevail as a successful parasite of people.
S aureus may not need to acquire the van genes from
vancomycin-resistant enterococci (VRE), since associated
with selective pressure are limited tissue concentrations and
the limited cytokilling activity of vancomycin.

A significant increase of MRSA was noticed in the early
1980s in Japan37 when the third-generation cephalosporins
were used widely throughout Japan. Based on a prediction
from a plausible mathematical model on the prevalence of
resistant bacteria in hospitals,38 unrestricted use of the
broad-spectrum cephalosporins with weak antimicrobial
activity against MRSA might have promoted this quick rise
in MRSA.37 Since, vancomycin and arbekacin (an
aminoglycoside antibiotic approved in 1990 for MRSA
infection) were not available in Japan until 1991, it became
general practice in Japan to treat MRSA infection with a
class of beta-lactam antibiotic, such as imipenem, flomoxef,
and cefmetazole, which have good MIC values against
hetero-MRSA.39 From MIC data, these beta-lactams
appeared effective since MRSA strains in the early 1980s
were heterogeneously resistant to meticillin (hetero-
MRSA).37 Towards the end of the 1980s, this practice led to a
clone having a high meticillin resistance (homo-MRSA
clone designated clonotype II-A),40 which became the
dominant clone in Japan in the 1990s.37

In-vitro selection of hetero-MRSA strains of clonotype II-
A with imipenem, cefmetazole, or flomoxef, yields homo-
converted mutants at a high frequency of 10�4 to 10�5.41 This
observation agrees with the historical rise of clonotype-II-A
MRSA in Japan.37 Unexpectedly about 5–10% of the homo-
MRSA mutants are hetero-VRSA (figure 9) which indicates
that hetero-VRSA might have emerged in Japan in the late
1980s from the MRSA strains exposed to the beta-lactams
used at the time. Indeed, several hetero-VRSA strains were
found in the late 1980s in Japan before the introduction of
vancomycin. There are several genetic mechanisms
underlying hetero-to-homo conversion of meticillin
resistance.41 Evidently, there exists some common genetic
mechanisms that confer both the hetero-to-homo conversion
of meticillin resistance and VSSA to hetero-VRSA conversion. 

With regard to the relationship between meticillin and
vancomycin resistance, Sieradzki and Tomasz reported a
phenomenon in which raised vancomycin resistance is
associated with reduced meticillin resistance.27 This
phenomenon is observed with an in-vitro VRSA strain
produced in the laboratory, which is based on the
inactivation of PBP activities and a drastic decrease in
peptidoglycan cross-linkage. In this condition, it is
understandable that the cells become very vulnerable to the

action of beta-lactam antibiotics. But, in the case of 16
clinical VRSA strains, the level of meticillin resistance
remains high (oxacillin MICs �64 mg/L) except for one
strain PC-3 isolated in New York, whose oxacillin MIC is 8
mg/L (L Cui, personal communication). 

The glycopeptide-resistance expression of hetero-VRSA
is also influenced by the exposure to beta-lactams.
Practically all beta-lactam antibiotics when used at an
optimal concentration, increases vancomycin resistance of
the hetero-VRSA strain, Mu3.42 This antagonism which can
be demonstrated in vitro, poses a potential problem in the
use of combination regimens of beta-lactam and
vancomycin against VRSA. It is surprising that there is no
antagonism shown between beta-lactams and teicoplanin.43

The reason for this difference is unknown, but may be
correlated with the difference in the resistance mechanism
for the two glycopeptides. It would be worthwhile to further
explore this difference, in an effort to optimise a combined
use of teicoplanin and beta-lactams in the treatment of
MRSA infections. 

Strategies to counter VRSA infection
The nature of the resistance mechanism of VRSA—prod-
uction and accumulation of excess amounts of cell-wall
peptidoglycan—indicates that VRSA would not be prevalent
in an environment where the glycopeptide selective pressure
is not strong. If a hospital reduces the consumption of
glycopeptides, VRSA should not prevail in the hospital.
However, this action does not solve the problem completely,
because hetero-VRSA may be capable of dissemination
without glycopeptide pressure. Therefore, it is necessary to
expand antibiotic prescription policy to include beta-lactam
antibiotics as well. If we reduce consumption of broad-
spectrum cephalosporins (which are ineffective against
MRSA), and, this measure combined with effective infection
control,44 the number of MRSA in the hospital would
decrease according to a mathematical model developed by
Lipsitch et al.38 Reducing the total number of MRSA is the
most effective measure for preventing emergence of VRSA
and hetero-VRSA. Recently, successful reduction of MRSA
was achieved in a Japanese hospital by cutting the total use
of broad-spectrum cephalosporins by half without
compromising infection outcome.45

It may also be possible to reduce the selection of
vancomycin resistance in MRSA isolates in the hospital by
substituting cephalosporins and carbapenems with
penicillins that have a relatively strong anti-MRSA activity
among beta-lactam antibiotics.39,46 In our hospital, use of
ampicillin/sulbactam was encouraged as a substitute for
broad-spectrum cephalosporins and carbapenems for
surgical prophylaxis after the emergence of VRSA in 1996.3

As a result, penicillinase-producing MRSA increased from
47% in 1996–1997 to 96% in 1999–2000 (note that both
Mu3 and Mu50 are characteristically non-producers of
penicillinase). At the same time, MRSA strains having
vancomycin MICs of 4 mg/L or above decreased from 0·43%
to 0·08% of total MRSA isolates during this period (T Oguri,
and J Igari, Clinical Laboratory, Juntendo University,
Tokyo, Japan, personal communication). Evidently, this is
only a preliminary observation. A well-designed clinical

ReviewVancomycin-resistant Staphylococcus aureus



For personal use. Only reproduce with permission from The Lancet Publishing Group.

THE LANCET Infectious Diseases Vol 1  October 2001154

study would be required to confirm this anecdotal decrease
in vancomycin-resistance among MRSA isolates. In any
such clinical study in this direction, however, it would be
important to monitor the prevalence of hetero-VRSA by
alternative methods that can detect subtle changes in
glycopeptide susceptibility of a high number of MRSA
isolates.

Treatment of VRSA infection 
New agents are being developed against MRSA. Some of
them are expected to have considerable activity against
hetero-VRSA and VRSA strains as well. Synercid has potent
activity against hetero-VRSA and VRSA strains.17 A new
quinolone antibiotic, DU-6859a, has MICs of 0·5 and 
1 mg/L against Mu3 and Mu50 which are resistant to other
quinolones such as levofloxacin, ciprofloxacin, sparfloxacin,
and tosufloxacin.47 Linezolid also has good activity against
MRSA, and is expected to be useful for cases where
vancomycin therapy fails. However, linezolid does not have
a cytokilling effect against MRSA. 

While we do not have any single cytocidal anti-MRSA
antibiotic that exceeds the potency of vancomycin, it is
important for us to explore several antibiotic combination
therapies. Ampicillin/sulbactam in this regard would be a
good partner for vancomycin; even the agent alone has good
anti-microbial activity against VRSA in an experimental
infection model.48 Linezolid has either a synergistic or
additive effect on hetero-VRSA and VRSA strains when
combined with ampicillin/sulbactam.49 This combination
therapy, as well as arbekacin and ampicillin/sulbactam,17,35

takes advantage of ampicillin’s high affinity to MRSA
PBP2�.50,39 When we use vancomycin, it is evident from its
mechanism of action and mechanism of resistance that we
have to try and reduce the bacterial burden from the
patient’s body with such procedures as surgical drainage,
debridement, and removal of contaminated lines, foreign
bodies, or prosthetic materials. When vancomycin therapy is
still unsuccessful with these procedures, we use triple
therapy of vancomycin, rifampicin (oral) and co-
trimoxazole (oral). 

Future perspectives
This year, the whole genome sequences of VRSA strain
Mu50 and MRSA strain N315 were published.29 The latter
strain, susceptible to vancomycin, is closely related to Mu50;
96% of the nucleotide sequences are identical between the
two. By comparing the sequences of N315 and Mu50, we
should be able to identify the genetic basis for glycopeptide
resistance. These genome data will serve as an invaluable
source of information for the future development of novel
antibiotics as well as an S aureus vaccine. However, the
information inscribed in the Mu50 and N315 genomes also
showed that S aureus is an extremely flexible pathogen. It is
capable of acquiring any useful genes for survival across
species barriers, and updating its armamentarium by
multiplying toxin genes by successive gene duplication to
attack any people of diverse immune history and genetic
backgrounds.29 We may never be free from the threat of
S aureus since part of the benign natural flora when we are
healthy becomes a formidable intruder when our body

defences become compromised. The best strategy is to
maintain a healthy ecological balance with effective
intervention strategies to reduce the organisms need to
acquire resistance to the best antibiotics. Decreasing the
total consumption of antibiotics both in the hospitals and
community, and, using them with good rationale based on
accurate diagnosis and susceptibility testing information
may help preserve mankind’s precious drug.
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